Osteopathy is a difficult subject. In the US, osteopaths are (almost) identical with doctors who have studied conventional medicine and hardly practice any manipulative techniques at all. Elsewhere, osteopaths are alternative healthcare providers specialising in what they like to call ‘osteopathic manipulative therapy’ (OMT). As though this is not confusing enough, osteopaths are doing similar things as chiropractors but are adamant that they are a distinct profession. Despite these assertions, I have seen little to clearly differentiate the two – with one exception perhaps: osteopaths tend to use techniques that are less frequently associated with severe harm.

Despite this confusion, or maybe because of it, we need to ask: DOES OMT WORK?

A recent study was aimed at assessing the effectiveness of OMT on chronic migraineurs using HIT-6 questionnaire, drug consumption, days of migraine, pain intensity and functional disability. All patients admitted to the Department of Neurology of Ancona’s United Hospitals, Italy, with a diagnosis of migraine and without chronic illness, were considered eligible for this 3-armed RCT.

Patients were randomly divided into three (1) OMT+medication therapy, (2) sham+medication therapy and (3) medication therapy only and received 8 treatments during 6 months. Changes in the HIT-6 score were considered as the main outcome measure.

A total of 105 subjects were included. At the end of the study, OMT significantly reduced HIT-6 score, drug consumption, days of migraine, pain intensity and functional disability.

The investigators concluded that these findings suggest that OMT may be considered a valid procedure for the management of migraineurs.

Similar results have been reported elsewhere:

One trial, for instance, concluded: “This study affirms the effects of OMT on migraine headache in regard to decreased pain intensity and the reduction of number of days with migraine as well as working disability, and partly on improvement of HRQoL. Future studies with a larger sample size should reproduce the results with a control group receiving placebo treatment in a long-term follow-up.”

Convinced? No, I am not.

Why? Because the studies that do exist seem a little too good to be true; because they are few and far between, because the few studies tend to be flimsy and have been published in dodgy journals, because they lack independent replications, and because critical reviews seem to conclude that OMT is nowhere near as promising as some osteopaths would like us to believe: “Further studies of improved quality are necessary to more firmly establish the place of physical modalities in the treatment of primary headache disorders. With the exception of high velocity chiropractic manipulation of the neck, the treatments are unlikely to be physically dangerous, although the financial costs and lost treatment opportunity by prescribing potentially ineffective treatment may not be insignificant. In the absence of clear evidence regarding their role in treatment, physicians and patients are advised to make cautious and individualized judgments about the utility of physical treatments for headache management; in most cases, the use of these modalities should complement rather than supplant better-validated forms of therapy.”

Nonspecific neck pain is extremely common, often disabling, and very costly for us all. If we believe those who earn their money with them, effective treatments for the condition abound. One of these therapies is osteopathy. But does osteopathic manipulation/mobilisation really work?

The objective of a recent review (the link I originally put in here does not work, I will supply a new one as soon as the article becomes available on Medline) was to find out. Specifically, the authors wanted to assess the effectiveness of osteopathic manipulative treatment (OMT) in the management of chronic nonspecific neck pain regarding pain, functional status, and adverse events.

Electronic literature searches unrestricted by language were performed in March 2014. A manual search of reference lists and personal communication with experts identified additional studies. Only randomized clinical trials (RCTs) were included, and studies of specific neck pain or single treatment techniques were excluded. Primary outcomes were pain and functional status, and secondary outcome was adverse events.

Studies were independently reviewed using a standardized data extraction form. Mean difference (MD) or standard mean difference (SMD) with 95% confidence intervals (CIs) and overall effect size were calculated for primary outcomes. GRADE was used to assess quality of the evidence.

Of 299 identified articles, 18 were evaluated and 15 excluded. The three included RCTs had low risk of bias. The results show that moderate-quality evidence suggested OMT had a significant and clinically relevant effect on pain relief (MD: -13.04, 95% CI: -20.64 to -5.44) in chronic nonspecific neck pain, and moderate-quality evidence suggested a non-significant difference in favour of OMT for functional status (SMD: -0.38, 95% CI: -0.88 to -0.11). No serious adverse events were reported.

The authors concluded that, based on the three included studies, the review suggested clinically relevant effects of OMT for reducing pain in patients with chronic nonspecific neck pain. Given the small sample sizes, different comparison groups, and lack of long-term measurements in the few available studies, larger, high-quality randomized controlled trials with robust comparison groups are recommended.

Yet again I am taken aback by several things simultaneously:

  • the extreme paucity of RCTs, particularly considering that neck pain is one of the main indication for osteopaths,
  • the rather uncritical text by the authors,
  • the nonsensical conclusions.

Let me offer my own conclusions which are, I hope, a little more realistic:


According to the ‘General Osteopathic Council’ (GOC), osteopathy is a primary care profession, focusing on the diagnosis, treatment, prevention and rehabilitation of musculoskeletal disorders, and the effects of these conditions on patients’ general health.

Using many of the diagnostic procedures applied in conventional medical assessment, osteopaths seek to restore the optimal functioning of the body, where possible without the use of drugs or surgery. Osteopathy is based on the principle that the body has the ability to heal, and osteopathic care focuses on strengthening the musculoskeletal systems to treat existing conditions and to prevent illness. 

Osteopaths’ patient-centred approach to health and well-being means they consider symptoms in the context of the patient’s full medical history, as well as their lifestyle and personal circumstances. This holistic approach ensures that all treatment is tailored to the individual patient.

On a good day, such definitions make me smile; on a bad day, they make me angry. I can think of quite a few professions which would fit this definition just as well or better than osteopathy. What are we supposed to think about a profession that is not even able to provide an adequate definition of itself?

Perhaps I try a different angle: what conditions do osteopaths treat? The GOC informs us that commonly treated conditions include back and neck pain, postural problems, sporting injuries, muscle and joint deterioration, restricted mobility and occupational ill-health.

This statement seems not much better than the previous one. What on earth is ‘muscle and joint deterioration’? It is not a condition that I find in any medical dictionary or textbook. Can anyone think of a broader term than ‘occupational ill health’? This could be anything from tennis elbow to allergies or depression. Do osteopaths treat all of those?

One gets the impression that osteopaths and their GOC are deliberately vague – perhaps because this would diminish the risk of being held to account on any specific issue?

The more one looks into the subject of osteopathy, the more confused one gets. The profession goes back to Andrew Still ((August 6, 1828 – December 12, 1917) Palmer, the founder of chiropractic is said to have been one of Still’s pupils and seems to have ‘borrowed’ most of his concepts from him – even though he always denied this) who defined osteopathy as a science which consists of such exact exhaustive and verifiable knowledge of the structure and functions of the human mechanism, anatomy and physiology & psychology including the chemistry and physics of its known elements as is made discernable certain organic laws and resources within the body itself by which nature under scientific treatment peculiar to osteopathic practice apart from all ordinary methods of extraneous, artificial & medicinal stimulation and in harmonious accord with its own mechanical principles, molecular activities and metabolic processes may recover from displacements, derangements, disorganizations and consequent diseases and regain its normal equilibrium of form and function in health and strength.

This and many other of his statements seem to indicate that the art of using language for obfuscation has a long tradition in osteopathy and goes back directly to its founding father.

What makes the subject of osteopathy particularly confusing is not just the oddity that, in conventional medicine, the term means ‘disease of the bone’ (which renders any literature searches in this area a nightmare) but also the fact that, in different countries, osteopaths are entirely different professionals. In the US, osteopathy has long been fully absorbed by mainstream medicine and there is hardly any difference between MDs and ODs. In the UK, osteopaths are alternative practitioners regulated by statute but are, compared to chiropractors, of minor importance. In Germany, osteopaths are not regulated and fairly ‘low key’, while in France, they are numerous and like to see themselves as primary care physicians.

And what about the evidence base of osteopathy? Well, that’s even more confusing, in my view. Evidence for which treatment? As US osteopaths might use any therapy from drugs to surgery, it could get rather complicated. So let’s just focus on the manual treatment as used by osteopaths outside the US.

Anyone who attempts to critically evaluate the published trial evidence in this area will be struck by at least two phenomena:

  1. the wide range of conditions treated with osteopathic manual therapy (OMT)
  2. the fact that there are several groups of researchers that produce one positive result after the next.

The best example is probably the exceedingly productive research team of J. C. Licciardone from the Osteopathic Research Center, University of North Texas. Here are a few conclusions from their clinical studies:

  1. The large effect size for OMT in providing substantial pain reduction in patients with chronic LBP of high severity was associated with clinically important improvement in back-specific functioning. Thus, OMT may be an attractive option in such patients before proceeding to more invasive and costly treatments.
  2. The large effect size for short-term efficacy of OMT was driven by stable responders who did not relapse.
  3. Osteopathic manual treatment has medium to large treatment effects in preventing progressive back-specific dysfunction during the third trimester of pregnancy. The findings are potentially important with respect to direct health care expenditures and indirect costs of work disability during pregnancy.
  4. Severe somatic dysfunction was present significantly more often in patients with diabetes mellitus than in patients without diabetes mellitus. Patients with diabetes mellitus who received OMT had significant reductions in LBP severity during the 12-week period. Decreased circulating levels of TNF-α may represent a possible mechanism for OMT effects in patients with diabetes mellitus. A larger clinical trial of patients with diabetes mellitus and comorbid chronic LBP is warranted to more definitively assess the efficacy and mechanisms of action of OMT in this population.
  5. The OMT regimen met or exceeded the Cochrane Back Review Group criterion for a medium effect size in relieving chronic low back pain. It was safe, parsimonious, and well accepted by patients.
  6. Osteopathic manipulative treatment slows or halts the deterioration of back-specific functioning during the third trimester of pregnancy.
  7. The only consistent finding in this study was an association between type 2 diabetes mellitus and tissue changes at T11-L2 on the right side. Potential explanations for this finding include reflex viscerosomatic changes directly related to the progression of type 2 diabetes mellitus, a spurious association attributable to confounding visceral diseases, or a chance observation unrelated to type 2 diabetes mellitus. Larger prospective studies are needed to better study osteopathic palpatory findings in type 2 diabetes mellitus.
  8. OMT significantly reduces low back pain. The level of pain reduction is greater than expected from placebo effects alone and persists for at least three months. Additional research is warranted to elucidate mechanistically how OMT exerts its effects, to determine if OMT benefits are long lasting, and to assess the cost-effectiveness of OMT as a complementary treatment for low back pain.

Based on this brief review of the evidence origination from one of the most active research team, one could be forgiven to think that osteopathy is a panacea. But such an assumption is, of course, nonsensical; a more reasonable conclusion might be the following: osteopathy is one of the most confusing and confused subject under the already confused umbrella of alternative medicine.

– Chronic low back pain (CLBP) is a condition which affects so many people that it represents a huge burden to individual patients’ suffering as well as to society in terms of loss of work time and increased economic cost. The number of therapies that have been claimed to be effective for CLBP can hardly be counted. Two of the most common treatments are spinal manipulation and exercise.

The purpose of this systematic review was to determine the effectiveness of spinal manipulation vs prescribed exercise for patients diagnosed with CLBP. Only RCTs that compared head-to-head spinal manipulation to an exercise group were included in this review.

A search of the current literature was conducted using a keyword process in CINAHL, Cochrane Register of Controlled Trials Database, Medline, and Embase. The searches included studies available up to August 2014. Studies were included based on PICOS criteria 1) individuals with CLBP defined as lasting 12 weeks or longer; 2) spinal manipulation performed by a health care practitioner; 3) prescribed exercise for the treatment of CLBP and monitored by a health care practitioner; 4) measurable clinical outcomes for reducing pain, disability or improving function; 5) randomized controlled trials. The methodological quality of all included articles was determined using the criteria developed and used by the Physiotherapy Evidence Database (PEDro).

Only three RCTs met the inclusion criteria of this systematic review. The outcomes used in these studies included Disability Indexes, Pain Scales and function improvement scales. One RCT found spinal manipulation to be more effective than exercise, and the results of another RCT indicated the reverse. The third RCT found both interventions offering equal effects in the long term.

The author concluded that there is no conclusive evidence that clearly favours spinal manipulation or exercise as more effective in treatment of CLBP. More studies are needed to further explore which intervention is more effective.

Whenever there are uncounted treatments for a given condition, one has to ask oneself whether they are all similarly effective or equally ineffective. The present review does unfortunately not answer this question, but I fear the latter might be more true than the former.

Considering how much money we spend on treating CLBP, it is truly surprising to see that just three RCTs are available comparing two of the most commonly used treatments for this condition. Equally surprising is the fact that we simply cannot tell, on the basis of these data, which of the two therapies is more effective.

What consequences should we draw from this information. Obviously we need more high quality trials. But what should we do in the meantime?

Whenever two treatments are equally effective (or, in this case, perhaps equally ineffective?), we must consider other important criteria such as safety and cost. Regular chiropractic care (chiropractors use spinal manipulation on almost every patient, while osteopaths and physiotherapists employ it less frequently)  is neither cheap nor free of serious adverse effects such as strokes; regular exercise has none of these disadvantages. In view of these undeniable facts, it is hard not to come up with anything other than the following recommendation: until new and compelling evidence becomes available, exercise ought to be preferred over spinal manipulation as a treatment of CLBP – and consequently consulting a chiropractor should not be the first choice for CLBP patients.

Chiropractors, like other alternative practitioners, use their own unique diagnostic tools for identifying the health problems of their patients. One such test is the Kemp’s test, a manual test used by most chiropractors to diagnose problems with lumbar facet joints. The chiropractor rotates the torso of the patient, while her pelvis is fixed; if manual counter-rotative resistance on one side of the pelvis by the chiropractor causes lumbar pain for the patient, it is interpreted as a sign of lumbar facet joint dysfunction which, in turn would be treated with spinal manipulation.

All diagnostic tests have to fulfil certain criteria in order to be useful. It is therefore interesting to ask whether the Kemp’s test meets these criteria. This is precisely the question addressed in a recent paper. Its objective was to evaluate the existing literature regarding the accuracy of the Kemp’s test in the diagnosis of facet joint pain compared to a reference standard.

All diagnostic accuracy studies comparing the Kemp’s test with an acceptable reference standard were located and included in the review. Subsequently, all studies were scored for quality and internal validity.

Five articles met the inclusion criteria. Only two studies had a low risk of bias, and three had a low concern regarding applicability. Pooling of data from studies using similar methods revealed that the test’s negative predictive value was the only diagnostic accuracy measure above 50% (56.8%, 59.9%).

The authors concluded that currently, the literature supporting the use of the Kemp’s test is limited and indicates that it has poor diagnostic accuracy. It is debatable whether clinicians should continue to use this test to diagnose facet joint pain.

The problem with chiropractic diagnostic methods is not confined to the Kemp’s test, but extends to most tests employed by chiropractors. Why should this matter?

If diagnostic methods are not reliable, they produce either false-positive or false-negative findings. When a false-negative diagnosis is made, the chiropractor might not treat a condition that needs attention. Much more common in chiropractic routine, I guess, are false-positive diagnoses. This means chiropractors frequently treat conditions which the patient does not have. This, in turn, is not just a waste of money and time but also, if the ensuing treatment is associated with risks, an unnecessary exposure of patients to getting harmed.

The authors of this review, chiropractors from Canada, should be praised for tackling this subject. However, their conclusion that “it is debatable whether clinicians should continue to use this test to diagnose facet joint pain” is in itself highly debatable: the use of nonsensical diagnostic tools can only result in nonsense and should therefore be disallowed.

The above title was used for a Statement for Healthcare Professionals From the American Heart Association/American Stroke Association

I have taken the liberty to quote its abstract in full:

Purpose—Cervical artery dissections (CDs) are among the most common causes of stroke in young and middle-aged adults. The aim of this scientific statement is to review the current state of evidence on the diagnosis and management of CDs and their statistical association with cervical manipulative therapy (CMT). In some forms of CMT, a high or low amplitude thrust is applied to the cervical spine by a healthcare professional.

Methods—Members of the writing group were appointed by the American Heart Association Stroke Council’s Scientific Statements Oversight Committee and the American Heart Association’s Manuscript Oversight Committee. Members were assigned topics relevant to their areas of expertise and reviewed appropriate literature, references to published clinical and epidemiology studies, morbidity and mortality reports, clinical and public health guidelines, authoritative statements, personal files, and expert opinion to summarize existing evidence and to indicate gaps in current knowledge.

Results—Patients with CD may present with unilateral headaches, posterior cervical pain, or cerebral or retinal ischemia (transient ischemic or strokes) attributable mainly to artery–artery embolism, CD cranial nerve palsies, oculosympathetic palsy, or pulsatile tinnitus. Diagnosis of CD depends on a thorough history, physical examination, and targeted ancillary investigations. Although the role of trivial trauma is debatable, mechanical forces can lead to intimal injuries of the vertebral arteries and internal carotid arteries and result in CD. Disability levels vary among CD patients with many having good outcomes, but serious neurological sequelae can occur. No evidence-based guidelines are currently available to endorse best management strategies for CDs. Antiplatelet and anticoagulant treatments are both used for prevention of local thrombus and secondary embolism. Case-control and other articles have suggested an epidemiologic association between CD, particularly vertebral artery dissection, and CMT. It is unclear whether this is due to lack of recognition of preexisting CD in these patients or due to trauma caused by CMT. Ultrasonography, computed tomographic angiography, and magnetic resonance imaging with magnetic resonance angiography are useful in the diagnosis of CD. Follow-up neuroimaging is preferentially done with noninvasive modalities, but we suggest that no single test should be seen as the gold standard.

Conclusions—CD is an important cause of ischemic stroke in young and middle-aged patients. CD is most prevalent in the upper cervical spine and can involve the internal carotid artery or vertebral artery. Although current biomechanical evidence is insufficient to establish the claim that CMT causes CD, clinical reports suggest that mechanical forces play a role in a considerable number of CDs and most population controlled studies have found an association between CMT and VAD stroke in young patients. Although the incidence of CMT-associated CD in patients who have previously received CMT is not well established, and probably low, practitioners should strongly consider the possibility of CD as a presenting symptom, and patients should be informed of the statistical association between CD and CMT prior to undergoing manipulation of the cervical spine.

In my view, this is an important statement to which I have little to add – however, I hope that the readers of this post will have comments, criticisms, observations, opinions, etc.

What is the best treatment for the millions of people who suffer from chronic low back pain (CLBP)? If we are honest, no therapy has yet been proven to be overwhelmingly effective. Whenever something like that happens in medicine, we have a proliferation of interventions which all are promoted as effective but which, in fact, work just marginally. And sure enough, in the case of CLBP, we have a constantly growing list of treatments none of which is really convincing.

One of the latest additions to this list is PILATES.

Pilates? What is this ? One practitioner describes it as follows: In Pilates, we pay a lot of attention to how our body parts are lined up in relation to each other, which is our alignment. We usually think of our alignment as our posture, but good posture is a dynamic process, dependent on the body’s ability to align its parts to respond to varying demands effectively. When alignment is off, uneven stresses on the skeleton, especially the spine, are the result. Pilates exercises, done with attention to alignment, create uniform muscle use and development, allowing movement to flow through the body in a natural way.

For example, one of the most common postural imbalances that people have is the tendency to either tuck or tilt the pelvis. Both positions create weaknesses on one side of the body and overly tight areas on the other. They deny the spine the support of its natural curves and create a domino effect of aches and pains all the way up the spine and into the neck. Doing Pilates increases the awareness of the proper placement of the spine and pelvis, and creates the inner strength to support the natural curves of the spine. This is called having a neutral spine and it has been the key to better backs for many people.

Mumbo-jumbo? Perhaps; in any case, we need evidence! Is there any at all? Surprisingly, the answer is yes. Recently, someone even published a proper systematic review.

This systematic review was aimed at evaluating the effectiveness of Pilates exercise in people with chronic low back pain (CLBP).

A search for RCTs was undertaken in 10 electronic. Two independent reviewers did the selection of evidence and evaluated the quality of the primary studies. To be included, relevant RCTs needed to be published in the English language. From 152 studies, 14 RCTs could be included.

The methodological quality of RCTs ranged from “poor” to “excellent”. A meta-analysis of RCTs was not undertaken due to the heterogeneity of RCTs. Pilates exercise provided statistically significant improvements in pain and functional ability compared to usual care and physical activity between 4 and 15 weeks, but not at 24 weeks. There were no consistent statistically significant differences in improvements in pain and functional ability with Pilates exercise, massage therapy, or other forms of exercise at any time period.

The authors drew the following conclusions: Pilates exercise offers greater improvements in pain and functional ability compared to usual care and physical activity in the short term. Pilates exercise offers equivalent improvements to massage therapy and other forms of exercise. Future research should explore optimal Pilates exercise designs, and whether some people with CLBP may benefit from Pilates exercise more than others.

So, Pilates can be added to the long list of treatments that work for CLBP, albeit not convincingly better than most other therapies on offer. Does that mean these options are all as good or as bad as the next? I don’t think so.

Let’s assume chiropractic/osteopathic manipulations, massage and various forms of exercise are all equally effective. How do we decide which is more commendable than the next? We clearly need to take other important factors into account:

  • cost
  • risks
  • acceptability for patients
  • availability

If we use these criteria, it becomes instantly clear that chiropractic and osteopathy are not favourites in this race for the most commendable CLBP-treatment. They are neither cheap nor free of risks. Massage is virtually risk-free but not cheap. This leaves us with various forms of exercise, including Pilates. But which exercise is better than the next? At present, we do not know, and therefore the last two factors are crucial: if people love doing Pilates and if they easily stick with it, then Pilates is fine.

I am sure chiropractors will (yet again) disagree with me but, to me, this logic could hardly be more straight forward.

The question whether infant colic can be effectively treated with manipulative therapies might seem rather trivial – after all, this is a benign condition which the infant quickly grows out of. However, the issue becomes a little more tricky, if we consider that it was one of the 6 paediatric illnesses which were at the centre of the famous libel case of the BCA against my friend and co-author Simon Singh. At the time, Simon had claimed that there was ‘not a jot of evidence’ for claiming that chiropractic was an effective treatment of infant colic, and my systematic review of the evidence strongly supported his statement. The BCA eventually lost their libel case and with it the reputation of chiropractic. Now a new article on this intriguing topic has become available; do we have to reverse our judgements?

The aim of this new systematic review was to evaluate the efficacy or effectiveness of manipulative therapies for infantile colic. Six RCTs of chiropractic, osteopathy or cranial osteopathy alone or in conjunction with other interventions were included with a total of 325 infants. Of the 6 included studies, 5 were “suggestive of a beneficial effect” and one found no evidence of benefit. Combining all the RCTs suggested that manipulative therapies had a significant effect. The average crying time was reduced by an average of 72 minutes per day. This effect was sustained for studies with a low risk of selection bias and attrition bias. When analysing only those studies with a low risk of performance bias (i.e. parental blinding) the improvement in daily crying hours was no longer statistically significant.

The quality of the studies was variable. There was a generally low risk of selection bias but a high risk of performance bias. Only one of the studies recorded adverse events and none were encountered.

From these data, the authors drew the following conclusion: Parents of infants receiving manipulative therapies reported fewer hours crying per day than parents whose infants did not and this difference was statistically significant. Most studies had a high risk of performance bias due to the fact that the assessors (parents) were not blind to who had received the intervention. When combining only those trials with a low risk of such performance bias the results did not reach statistical significance.

Does that mean that chiropractic does work for infant colic? No, it does not!

The first thing to point out is that the new systematic review included not just RCTs of chiropractic but also osteopathy and cranio-sacral therapy.

The second important issue is that the effects disappear, once performance bias is being accounted for which clearly shows that the result is false positive.

The third relevant fact is that the majority of the RCTs were of poor quality. The methodologically best studies were negative.

And the fourth thing to note is that only one study mentioned adverse effects, which means that the other 5 trials were in breach of one of rather elementary research ethics.

What makes all of this even more fascinating is the fact that the senior author of the new publication, George Lewith, is the very expert who advised the BCA in their libel case against Simon Singh. He seems so fond of his work that he even decided to re-publish it using even more misleading language than before. It is, of course, far from me to suggest that his review was an attempt to white-wash the issue of chiropractic ‘bogus’ claims. However, based on the available evidence, I would have formulated conclusions which are more than just a little different from his; something like this perhaps:

The current best evidence suggests that the small effects that emerge when we pool the data from mostly unreliable studies are due to bias and therefore not real. This systematic review therefore fails to show that manipulative therapies are effective. It furthermore points to a serious breach of research ethics by the majority of researchers in this field.

The mechanisms thorough which spinal manipulative therapy (SMT) exerts its alleged clinical effects are not well established. A new study investigated the effects of subject expectation on clinical outcomes.

Sixty healthy subjects underwent quantitative sensory testing to their legs and low backs. They were randomly assigned to receive a positive, negative, or neutral expectation instructional set regarding the effects of a spe cific SMT technique on pain perception. Following the instructional set, all subjects received SMT and underwent repeat sensory tests.

No inter-group differences in pain response were present in the lower extremity following SMT. However, a main effect for hypoalgesia was present. A significant interaction was present between change in pain perception and group assignment in the low back with participants receiving a negative expectation instructional set demonstrating significant hyperalgesia.

The authors concluded that this study provides preliminary evidence for the influence of a non- specific effect (expectation) on the hypoalgesia associated with a single session of SMT in normal subjects. We replicated our previous findings of hypoalgesia in the lower extremity associated with SMT to the low back. Additionally, the resultant hypoalgesia in the lower extremity was independent of an expectation instructional set directed at the low back. Conversely, participants receiving a negative expectation instructional set demonstrated hyperalgesia in the low back following SMT which was not observed in those receiving a positive or neutral instructional set.

More than 10 years ago, we addressed a similar issue by conducting a systematic review of all sham-controlled trials of SMT. Specifically, we wanted to summarize the evidence from sham-controlled clinical trials of SMT. Eight studies fulfilled our inclusion/exclusion criteria. Three trials (two on back pain and one on enuresis) were judged to be burdened with serious methodological flaws. The results of the three most rigorous studies (two on asthma and one on primary dysmenorrhea) did not suggest that SMT leads to therapeutic responses which differ from an inactive sham-treatment. We concluded that sham-controlled trials of SMT are sparse but feasible. The most rigorous of these studies suggest that SMT is not associated with clinically relevant specific therapeutic effects.

Taken together, these two articles provide intriguing evidence to suggest that SMT is little more than a theatrical placebo. Given the facts that SMT is neither cheap nor devoid of risks, the onus is now on those who promote SMT, e.g. chiropractors, osteopaths and physiotherapists, to show that this is not true.

The safety of the manual treatments such as spinal manipulation is a frequent subject on this blog. Few experts would disagree with the argument that more good data are needed – and what could be better data than that coming from a randomised clinical trial (RCT)?

The aim of this RCT was to investigate differences in occurrence of adverse events between three different combinations of manual treatment techniques used by manual therapists (i.e. chiropractors, naprapaths, osteopaths, physicians and physiotherapists) for patients seeking care for back and/or neck pain.

Participants were recruited among patients seeking care at the educational clinic of the Scandinavian College of Naprapathic Manual Medicine in Stockholm. 767 patients were randomized to one of three treatment arms:

  1.  manual therapy (i.e. spinal manipulation, spinal mobilization, stretching and massage) (n = 249),
  2.  manual therapy excluding spinal manipulation (n = 258)
  3.  manual therapy excluding stretching (n = 260).

Treatments were provided by students in the seventh semester (of total 8). Adverse events were monitored via a questionnaire after each return visit and categorized in to five levels:

  1. short minor,
  2. long minor,
  3. short moderate,
  4. long moderate,
  5. serious

This was based on the duration and/or severity of the event.

The most common adverse events were soreness in muscles, increased pain and stiffness. No differences were found between the treatment arms concerning the occurrence of these adverse event. Fifty-one percent of patients, who received at least three treatments, experienced at least one adverse event after one or more visits. Women more often had short moderate adverse events, and long moderate adverse events than men.

The authors conclude that adverse events after manual therapy are common and transient. Excluding spinal manipulation or stretching do not affect the occurrence of adverse events. The most common adverse event is soreness in the muscles. Women reports more adverse events than men.

What on earth is naprapathy? I hear you ask. Here is a full explanation from a naprapathy website:

Naprapathy is a form of bodywork that is focused on the manual manipulation of the spine and connective tissue. Based on the fundamental principles of osteopathy and chiropractic techniques, naprapathy is a holistic and integrative approach to restoring whole health. In fact, naprapathy often incorporates multiple, complimentary therapies, such as massage, nutritional counseling, electrical muscle stimulation and low-level laser therapy.

Naprapathy also targets vertebral subluxations, or physical abnormalities present that suggest a misalignment or injury of the spinal vertebrae. This analysis is made by a physical inspection of the musculoskeletal system, as well as visual observation. The practitioner will also conduct a lengthy interview with the client to help determine stress level and nutritional status as well. An imbalance along one or more of these lines may signal trouble within the musculoskeletal structure.

The naprapathy practitioner is particularly skilled in identifying restricted or stressed components of the fascial system, or connective tissue. It is believed that where constriction of muscles, ligaments, and tendons exists, there is impaired blood flow and nerve functioning. Naprapathy attempts to correct these blockages through hands-on manipulation and stretching of connective tissue. However, since this discipline embodies a holistic approach, the naprapathy practitioner is also concerned with their client’s emotional health. To that end, many practitioners are also trained in psychotherapy and even hypnotherapy.

So, now we know!

We also know that the manual therapies tested here cause adverse effects in about half of all patients. This figure ties in nicely with the ones we had regarding chiropractic: ~ 50% of all patients suffer mild to moderate adverse effects after chiropractic spinal manipulation which usually last 2-3 days and can be strong enough to affect their quality of life. In addition very serious complications have been noted which luckily seem to be much rarer events.

In my view, this raises the question: DO THESE TREATMENTS GENERATE MORE GOOD THAN HARM? I fail to see any good evidence to suggest that they do – but, of course, I would be more than happy to revise this verdict, provided someone shows me the evidence.

Recent Comments

Note that comments can now be edited for up to five minutes after they are first submitted.

Click here for a comprehensive list of recent comments.